Testing for Non-Linear Structure in an Artificial Financial Market
نویسندگان
چکیده
We present a stochastic simulation model of a prototype financial market. Our market is populated by both noise traders and fundamentalist speculators. The dynamics covers switches in the prevailing mood among noise traders (optimistic or pessimistic) as well as switches of agents between the noise trader and fundamentalist group in response to observed differences in profits. The particular behavioral variant adopted by an agent also determines his decision to enter on the long or short side of the market. Short-run imbalances between demand and supply lead to price adjustments by a market maker or auctioneer in the usual Walrasian manner. Our interest in this paper is in exploring the behavior of the model when testing for the presence of chaos or nonlinearity in the simulated data. As it turns out, attempts to determine the fractal dimension of the underlying process give unsatisfactory results in that we experience a lack of convergence of the estimate. Explicit tests for non-linearity and dependence (the BDS and Kaplan tests) also give very unstable results in that both acceptance and strong rejection of IIDness can be found in different realizations of our model. All in all, this behavior is very similar to experience collected with empirical data and our results may point towards an explanation of why robustness of inference in this area is low. However, when testing for dependence in second moments and estimating GARCH models, the results appear much more robust and the chosen GARCH specification closely resembles the typical outcome of empirical studies.
منابع مشابه
Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملبررسی رابطۀ میان ساختار بازار و ساختار سرمایه در بورس اوراق بهادار تهران
In recent years, financial economists have increasingly recognized the interaction between market structure and capital structure or financial decisions of the firms. This research analyzes the relationship between market structure (power) and the capital structure (leverage ratio) of listed companies in Tehran Stock Exchange (TSE) based on static and dynamic approach. In this research we s...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملChaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements
For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...
متن کاملNonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کامل